Pixel Tracking

Search

Hydraulic Locks Protect Against Unplanned Moves and Dropped Loads

Date: 15-09-2020

 

Even better, they add a level of safety to critical applications.

Hydraulic and pneumatic circuits contain load-holding and control valves; each holds an applied load in place and controls its rate of motion. When they operate as expected, they improve the circuit’s safety and control. These valves are the basic and the first line of load-holding safety—they are staples of circuit design.

But many critical safety and performance circuit requirements call for levels of safety these valves cannot provide on their own. Used alone, the valves and the rest of the hydraulic or pneumatic circuit are limited. Any failure or sticking in the valve, parallel check valves, hoses or fittings—or even seals leaking in an actuator—can cause unplanned and unsafe load movements if valves are the sole means of safety. Typically, these valves cannot be eliminated. Instead they must be supplemented to get the level of safety that is needed.

Locking Options

There are different options for supplemental mechanical locking and important parameters when choosing which to use: power needs; space available; operating pressure; operating environment; the need for locking in any location along the stroke, or only in fixed positions; and whether automatic or manual locking is best. These parameters determine the available options.

The most advanced locks hold the actuator rod anywhere along the stroke. They are “power removed” locks that instantly lock the rod when input pressure (power) is removed or lost. These locks are typically spring loaded or contain a second smaller hydraulic or pneumatic cylinder that is placed as a collar, or an installable “head,” on top of the main actuator-rod end cap. The lock fits around the rod and clamps against it to prevent movement.

These locks are inexpensive and common and are effective within their design limitations. They are intended to prevent failure, and with some designs, the load must be removed and the actuator moved in a specific direction to release the lock.

These off-the-shelf locks come in common rod sizes and can be hydraulic or pneumatic. They should be reliable and reusable and operate without too much maintenance or replacement requirements. They tend to be limited to cylinder pressures of 2,500 psi or less, so they cannot be used for high-load applications or with higher operating pressures.

 

With power removed, interference locks built into hydraulic cylinders deliver the highest level of safety performance. They meet the highest load demand and  operating pressures, instantly locking at any position with no drift. They eliminate the need for other components in the power circuit that might cause a failure, including the cylinder seals and the fluid itself. They provide safety using just the integrated locking feature, the cylinder body and the rod. This means the cylinders have the fewest possible component fail points and failure modes that could cause uncontrolled and unplanned load movements or failures.

These designs are the strongest locking options in strength and will lock anywhere on the rod. They also provide zero backlash and high stiffness when required. They can have instant lock or unlock and there is no wear on components. As a positive lock, they lock when hydraulic pressure is removed, removing the risk of accidental pressure loss from any cause.